

Chongqing University of Technology

Towards Unsupervised Deep Graph Structure Learning

Yixin Liu¹, Yu Zheng², Daokun Zhang^{1,3}, Hongxu Chen⁴, Hao Peng⁵, Shirui Pan^{1*} ¹Monash University ²La Trobe University ³Monash Suzhou Research Institute ⁴University of Technology Sydney ⁵Beihang University {yixin.liu,daokun.zhang,shirui.pan}@monash.edu; yu.zheng@latrobe.edu.au;hongxu.chen@uts.edu.au;penghao@buaa.edu.cn

Code : https://github.com/GRAND-Lab/SUBLIME

WWW_2022

Chongqing University of Technology

ATA Advanced Technique of Artificial Intelligence

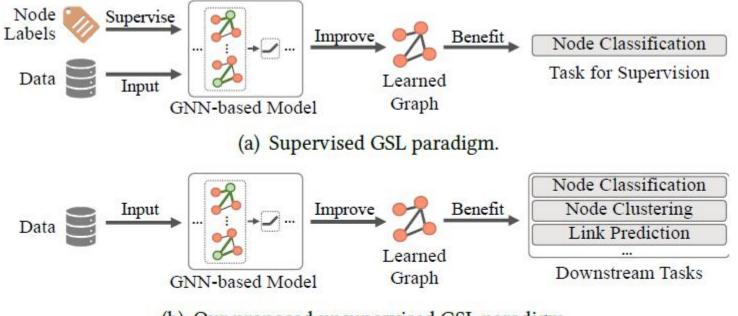
Artificial

1.Introduction

2.Method

3.Experiments

Introduction



(b) Our proposed unsupervised GSL paradigm.

Figure 1: Concept maps of (a) the existing supervised GSL paradigm and (b) our proposed unsupervised GSL paradigm.

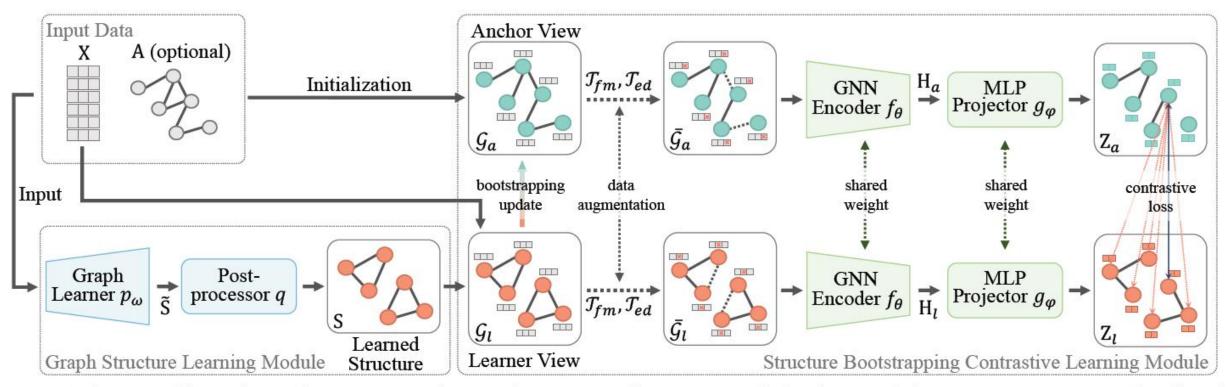
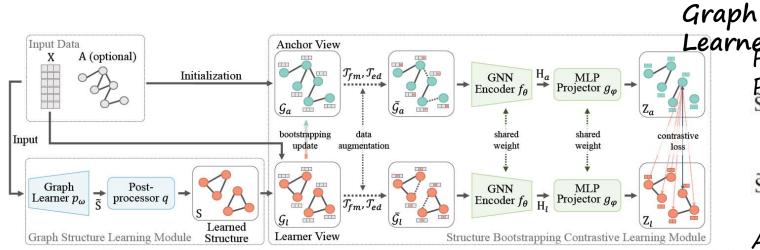
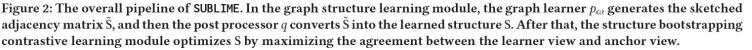


Figure 2: The overall pipeline of SUBLIME. In the graph structure learning module, the graph learner p_{ω} generates the sketched adjacency matrix \tilde{S} , and then the post processor q converts \tilde{S} into the learned structure S. After that, the structure bootstrapping contrastive learning module optimizes S by maximizing the agreement between the learner view and anchor view.





Graph Learner Full Graph Parameterization, FGP $S = p_{\omega}^{FGP} = \sigma(\Omega),$ (1)

where $\omega = \Omega \in \mathbb{R}^{n \times n}$ is a parameter matrix

$$\tilde{\mathbf{S}} = p_{\omega}^{ML}(\mathbf{X}, \mathbf{A}) = \phi(h_{\omega}(\mathbf{X}, \mathbf{A})) = \phi(\mathbf{E}),$$
(2)

Attentive $Learner_{\mathbf{E}}(\mathbf{e}_{n}^{(l-1)}) = \sigma([\mathbf{e}_{1}^{(l-1)} \odot \omega^{(l)}, \cdots, \mathbf{e}_{n}^{(l-1)} \odot \omega^{(l)}]^{\mathsf{T}}), (3)$ MLP Learner

$$\mathbf{E}^{(l)} = h_{w}^{(l)}(\mathbf{E}^{(l-1)}) = \sigma(\mathbf{E}^{(l-1)}\Omega^{(l)}), \tag{4}$$

GNN

$$\mathbf{E}^{(l)} = h_{w}^{(l)}(\mathbf{E}^{(l-1)}, \mathbf{A}) = \sigma\left(\widetilde{\mathbf{D}}^{-\frac{1}{2}}\widetilde{\mathbf{A}}\widetilde{\mathbf{D}}^{-\frac{1}{2}}\mathbf{E}^{(l-1)}\Omega^{(l)}\right),$$
(5)

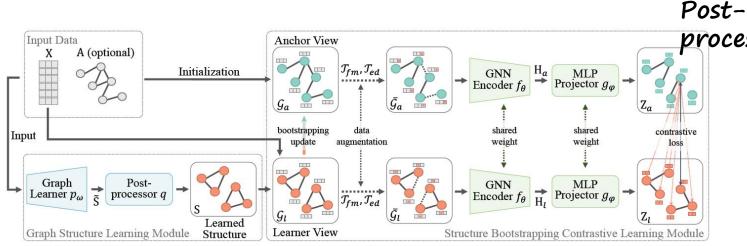
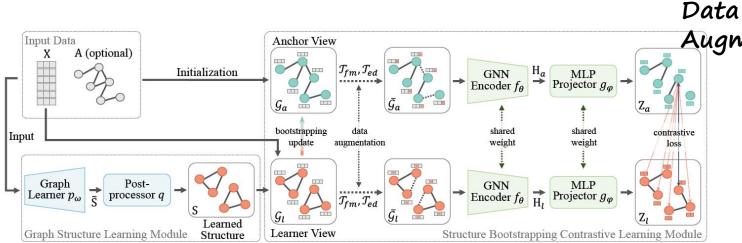


Figure 2: The overall pipeline of SUBLIME. In the graph structure learning module, the graph learner p_{ω} generates the sketched adjacency matrix \tilde{S} , and then the post processor q converts \tilde{S} into the learned structure S. After that, the structure bootstrapping contrastive learning module optimizes S by maximizing the agreement between the learner view and anchor view.

 $\tilde{\mathbf{S}}_{ij}^{(sp)} = q_{sp} \left(\tilde{\mathbf{S}}_{ij} \right) = \begin{cases} \tilde{\mathbf{S}}_{ij}, & \tilde{\mathbf{S}}_{ij} \in \operatorname{top-k}(\tilde{\mathbf{S}}_{i}), \\ 0, & \tilde{\mathbf{S}}_{ij} \notin \operatorname{top-k}(\tilde{\mathbf{S}}_{i}), \end{cases}$ (6)

Symmetrization and $\tilde{S}^{(sym)} = q_{sym} \left(q_{act} \left(\tilde{S}^{(sp)} \right) \right) = \frac{\sigma_q \left(\tilde{S}^{(sp)} \right) + \sigma_q \left(\tilde{S}^{(sp)} \right)^{\mathsf{T}}}{2},$ (7)

define
$$\sigma_q(\cdot)$$
 as ReLU function
Normalizati
 $S = q_{norm} \left(\tilde{S}^{(sym)} \right) = \left(\tilde{D}^{(sym)} \right)^{-\frac{1}{2}} \tilde{S}^{(sym)} \left(\tilde{D}^{(sym)} \right)^{-\frac{1}{2}},$ (8)



Augmentation $\vec{X} = \mathcal{T}_{fm}(X) = [x_1 \odot m^{(x)}, \cdots, x_n \odot m^{(x)}]^{\mathsf{T}}, \quad (9)$

$$Edge$$

$$d_{\overline{\mathbf{A}}} = \mathcal{T}_{ed}(\mathbf{A}) = \mathbf{A} \odot \mathbf{M}^{(a)}, \qquad (10)$$

$$\overline{\mathcal{G}}_{l} = (\mathcal{T}_{ed}(S), \mathcal{T}_{fm}(X)), \ \overline{\mathcal{G}}_{a} = (\mathcal{T}_{ed}(A_{a}), \mathcal{T}_{fm}(X)),$$
(11)

Figure 2: The overall pipeline of SUBLIME. In the graph structure learning module, the graph learner p_{ω} generates the sketched adjacency matrix \tilde{S} , and then the post processor q converts \tilde{S} into the learned structure S. After that, the structure bootstrapping contrastive learning module optimizes S by maximizing the agreement between the learner view and anchor view.

(14)

Method

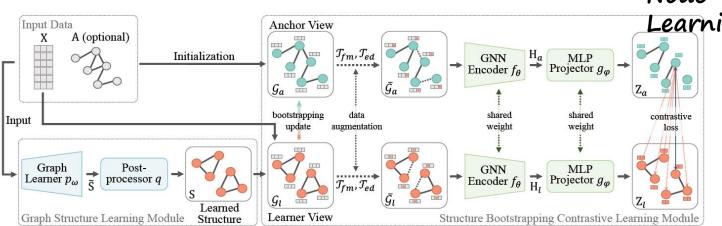


Figure 2: The overall pipeline of SUBLIME. In the graph structure learning module, the graph learner p_{ω} generates the sketched adjacency matrix \tilde{S} , and then the post processor q converts \tilde{S} into the learned structure S. After that, the structure bootstrapping contrastive learning module optimizes S by maximizing the agreement between the learner view and anchor view.

Node-level Contrastive

$$e^{n} H_{l} = f_{\theta}(\overline{\mathcal{G}}_{l}), H_{a} = f_{\theta}(\overline{\mathcal{G}}_{a}), \qquad (12)$$

$$MLP-based$$

$$pr_{Z_l} = g_{\varphi}(H_l), \ Z_a = g_{\varphi}(H_a), \tag{13}$$

Node-level contrastive loss

$$\mathcal{L} = \frac{1}{2n} \sum_{i=1}^{n} \left[\ell(z_{l,i}, z_{a,i}) + \ell(z_{a,i}, z_{l,i}) \right],$$

$$\ell(z_{l,i}, z_{a,i}) = \log \frac{e^{\sin(z_{l,i}, z_{a,i})/t}}{\sum_{k=1}^{n} e^{\sin(z_{l,i}, z_{a,k})/t}},$$

 $sim(\cdot, \cdot)$ is the cosine similarity function

Structure Bootstrapping
Mechanicm
$$A_a \leftarrow \tau A_a + (1 - \tau)S.$$
 (15)

Table 1: Node classification accuracy (percentage with standard deviation) in structure inference scenario. Available data for *graph structure learning* during the training phase is shown in the first column, where X, Y, A_{knn} correspond to node features, labels and the adjacency matrix of kNN graph, respectively. The highest and second highest results are highlighted with **boldface** and **underline**, respectively. The symbol "OOM" means out of memory.

Available Data for GSL	Method	Dataset								
		Cora	Citeseer	Pubmed	ogbn-arxiv	Wine	Cancer	Digits	20news	
1 	LR	60.8±0.0	62.2±0.0	72.4±0.0	52.5±0.0	92.1±1.3	93.3±0.5	85.5±1.5	42.7±1.7	
-	Linear SVM	58.9±0.0	58.3±0.0	72.7 ± 0.1	51.8 ± 0.0	93.9±1.6	90.6±4.5	87.1±1.8	40.3±1.4	
-	MLP	56.1±1.6	56.7±1.7	71.4 ± 0.0	54.7 ± 0.1	89.7±1.9	92.9±1.2	36.3 ± 0.3	38.6 ± 1.4	
. .	GCN _{knn} [22]	66.5±0.4	68.3±1.3	70.4 ± 0.4	54.1±0.3	93.2±3.1	83.8±1.4	91.3±0.5	41.3±0.6	
-	GAT _{knn} [40]	66.2±0.5	70.0 ± 0.6	69.6±0.5	OOM	91.5±2.4	95.1±0.8	91.4 ± 0.1	45.0 ± 1.2	
-	SAGEknn [15]	66.1±0.7	68.0±1.6	68.7 ± 0.2	55.2 ± 0.4	87.4±0.8	93.7±0.3	91.6 ± 0.7	45.4 ± 0.4	
Х, Ү	LDS [12]	71.5±0.8	71.5±1.1	OOM	OOM	97.3±0.4	94.4±1.9	92.5±0.7	46.4±1.6	
X, Y, A _{knn}	GRCN [53]	69.6±0.2	70.4 ± 0.3	70.6 ± 0.1	OOM	96.6±0.4	95.4±0.6	92.8 ± 0.2	41.8 ± 0.2	
X, Y, Aknn	Pro-GNN [20]	69.2±1.4	69.8±1.7	OOM	OOM	95.1±1.5	96.5±0.1	93.9±1.9	45.7±1.4	
X, Y, A _{knn}	GEN [45]	69.1±0.7	70.7 ± 1.1	70.7 ± 0.9	OOM	96.9 ± 1.0	96.8±0.4	94.1 ± 0.4	47.1±0.3	
X, Y	IDGL [7]	70.9±0.6	68.2±0.6	70.1±1.3	55.0 ± 0.2	98.1±1.1	95.1±1.0	93.2 ± 0.9	48.5±0.6	
X, Y	SLAPS [11]	73.4±0.3	72.6 ± 0.6	74.4 ± 0.6	56.6±0.1	96.6±0.4	96.6±0.2	94.4±0.7	50.4±0.7	
Aknn	GDC [23]	68.1±1.2	68.8±0.8	68.4±0.4	OOM	96.1±1.0	95.9±0.4	92.6±0.5	46.4±0.9	
Х	SLAPS-2s [11]	72.1 ± 0.4	69.4±1.4	71.1 ± 0.5	54.2 ± 0.2	96.2±2.1	95.9±1.2	93.6±0.8	47.7±0.7	
X	SUBLIME	73.0±0.6	73.1±0.3	73.8±0.6	55.5 ± 0.1	98.2±1.6	97.2±0.2	94.3 ± 0.4	49.2±0.6	

Experiments

Table 2: Node classification accuracy (percentage with standard deviation) in structure refinement scenario.

Available	M-41 4	Dataset						
Data for GSL	Method	Cora	Citeseer	Pubmed	ogbn-arxiv			
<u>a</u>	GCN	81.5	70.3	79.0	71.7±0.3			
2	GAT	83.0±0.7	72.5±0.7	79.0±0.3	OOM			
×	SAGE	77.4±1.0	67.0±1.0	76.6±0.8	71.5 ± 0.3			
X, Y, A	LDS	83.9±0.6	74.8±0.3	OOM	OOM			
X, Y, A	GRCN	84.0±0.2	73.0±0.3	78.9±0.2	OOM			
X, Y, A	Pro-GNN	82.1±0.4	71.3±0.4	OOM	OOM			
X, Y, A	GEN	82.3±0.4	73.5±1.5	80.9±0.8	OOM			
X, Y, A	IDGL	84.0±0.5	73.1±0.7	83.0±0.2	72.0±0.3			
A	GDC	83.6±0.2	73.4±0.3	78.7±0.4	OOM			
X, A	SUBLIME	84.2±0.5	73.5±0.6	81.0±0.6	71.8±0.3			

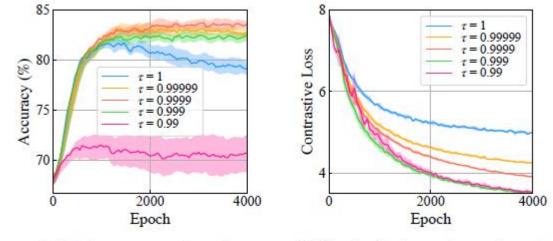
Table 3: Node clustering performance (4 metrics in percentage) in structure refinement scenario.

Mathad	Cora				Citeseer				
Method	C-ACC	NMI	F1	ARI	C-ACC	NMI	F1	ARI	
K-means	50.0	31.7	37.6	23.9	54.4	31.2	41.3	28.5	
SC	39.8	29.7	33.2	17.4	30.8	9.0	25.7	8.2	
GE	30.1	5.9	23.0	4.6	29.3	5.7	21.3	4.3	
DW	52.9	38.4	43.5	29.1	39.0	13.1	30.5	13.7	
DNGR	41.9	31.8	34.0	14.2	32.6	18.0	30.0	4.3	
M-NMF	42.3	25.6	32.0	16.1	33.6	9.9	25.5	7.0	
RMSC	46.6	32.0	34.7	20.3	51.6	30.8	40.4	26.6	
TADW	53.6	36.6	40.1	24.0	52.9	32.0	43.6	28.6	
VGAE	59.2	40.8	45.6	34.7	39.2	16.3	27.8	10.1	
ARGA	64.0	44.9	61.9	35.2	57.3	35.0	54.6	34.1	
MGAE	68.1	48.9	53.1	56.5	66.9	41.6	52.6	42.5	
AGC	68.9	53.7	65.6	44.8	67.0	41.1	62.5	41.5	
DAEGC	70.4	52.8	68.2	49.6	67.2	39.7	63.6	41.0	
SUBLIME	71.3	54.2	63.5	50.3	68.5	44.1	63.2	43.9	

Experiments

Table 4: Test accuracy corresponding to different bootstrapping decay rate τ in structure refinement scenario.

Dataset	Bootstrapping decay rate τ								
Dataset	1	0.99999	0.9999	0.999	0.99				
Cora	82.1	83.2	84.2	82.4	70.9				
Citeseer	71.9	72.6	73.5	73.4	72.6				
Pubmed	80.1	80.3	81.0	80.8	80.5				



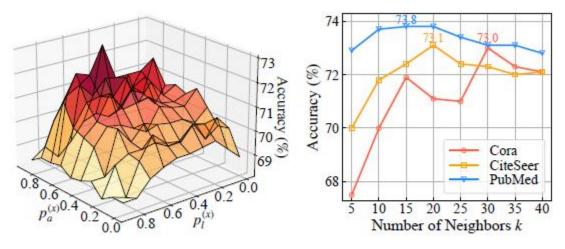
(a) Test accuracy w.r.t. epoch.

(b) Contrastive loss value w.r.t. epoch.

Figure 3: Curves of training process on Cora dataset.

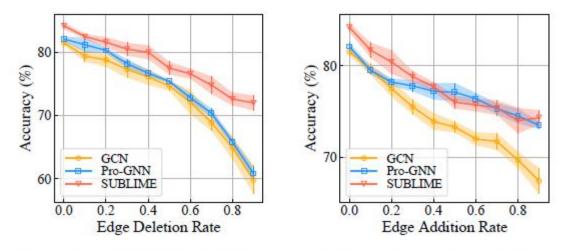
ATA Advanced Technique of Artificial

Experiments



(a) Accuracy w.r.t. feature masking rates. (b) Accuracy w.r.t. number of neighbors.

Figure 4: Sensitivity of hyper-parameters $p^{(x)}$ and k.



(a) Accuracy w.r.t. edge deletion rate. Figure 5: Test accuracy in the scenarios where graph structures are perturbed by edge deletion or addition.

ATA Advanced Technique of Artificial

Experiments

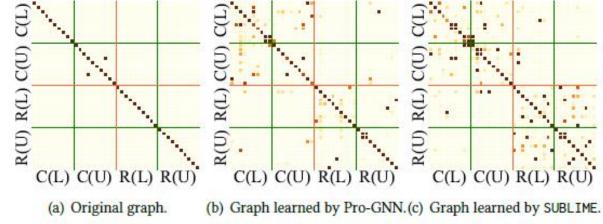


Figure 6: Heatmaps of the subgraph adjacency matrices of (a) the original graph with self-loop, the graph learned by (b) Pro-GNN and (c) SUBLIME on Cora dataset. A block in darker color indicates a larger edge weight between two nodes.

Thank you!